Inverse Lax-Wendroff procedure for numerical boundary conditions of convection-diffusion equations
نویسندگان
چکیده
Abstract We consider numerical boundary conditions for high order finite difference schemes for solving convection-diffusion equations on arbitrary geometry. The two main difficulties for numerical boundary conditions in such situations are: (1) the wide stencil of the high order finite difference operator requires special treatment for a few ghost points near the boundary; (2) the physical boundary may not coincide with grid points in a Cartesian mesh and may intersect with the mesh in an arbitrary fashion. For purely convection equations, the so-called inverse Lax-Wendroff procedure [29], in which we convert the normal derivatives into the time derivatives and tangential derivatives along the physical boundary by using the equations, have been quite successful. In this paper, we extend this methodology to convection-diffusion equations. It turns out that this extension is non-trivial, because totally different boundary treatments are needed for the diffusion-dominated and the convection-dominated regimes. We design a careful combination of the boundary treatments for the two regimes and obtain a stable and accurate boundary condition for general convection-diffusion equations. We provide extensive numerical tests for oneand two-dimensional problems involving both scalar equations and systems, including the compressible Navier-Stokes equations, to demonstrate the good performance of our numerical boundary conditions.
منابع مشابه
Stability Analysis of the Inverse Lax-Wendroff Boundary Treatment for High Order Central Difference Schemes for Diffusion Equations
In this paper, high order central finite difference schemes in a finite interval are analyzed for the diffusion equation. Boundary conditions of the initial-boundary value problem (IBVP) are treated by the simplified inverse Lax-Wendroff (SILW) procedure. For the fully discrete case, a third order explicit Runge-Kutta method is used as an example for the analysis. Stability is analyzed by both ...
متن کاملAn inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models
In this paper we present a new algorithm based on a Cartesian mesh for the numerical approximation of kinetic models on complex geometry boundary. Due to the high dimensional property, numerical algorithms based on unstructured meshes for a complex geometry are not appropriate. Here we propose to develop an inverse Lax-Wendroff procedure, which was recently introduced for conservation laws [21]...
متن کاملInverse Lax-Wendroff procedure for numerical boundary conditions of hyperbolic equations: survey and new developments
Abstract. In this paper, we give a survey and discuss new developments and computational results for a high order accurate numerical boundary condition based on finite difference methods for solving hyperbolic equations on Cartesian grids, while the physical domain can be arbitrarily shaped. The challenges are the wide stencil for the high order scheme and the fact that the physical boundary do...
متن کاملInverse Lax-Wendroff procedure for numerical boundary treatment of hyperbolic equations
Abstract We discuss a high order accurate numerical boundary condition for solving hyperbolic conservation laws on fixed Cartesian grids, while the physical domain can be arbitrarily shaped and moving. Compared with body-fitted meshes, the biggest advantage of Cartesian grids is that the grid generation is trivial. The challenge is however that the physical boundary does not usually coincide wi...
متن کاملEfficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws
In [18], two of the authors developed a high order accurate numerical boundary condition procedure for hyperbolic conservation laws on a Cartesian mesh, which allows the computation using high order finite difference schemes on Cartesian meshes to solve problems in arbitrary physical domains whose boundaries do not coincide with grid lines. This procedure is based on the so-called inverse Lax-W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 317 شماره
صفحات -
تاریخ انتشار 2016